Nuclear Structure and Decay Data (NSDD) Network Brookhaven National Laboratory November 6-7, 2003

Decay Data Evaluation Project (DDEP)

Edgardo Browne

Lawrence Berkeley National Laboratory

Berkeley, California

- Objectives
- 2. Members of the DDEP Collaboration
- 3. Formation of the DDEP Collaboration
- 4. Nuclear and Atomic Properties in DDEP Evaluations
- 5. Evaluation Procedures and Computer Programs
- 6. List of Radionuclides for DDEP Evaluation
- 7. Publication and Current Status of DDEP Evaluations
- 8. DDEP, IAEA-CRP, and ENSDF Evaluations

1. Objectives

Applied Research and Detector Calibration

Reactor Materials

Nuclear Medicine

Astrophysics

Data Content and Presentation

Atomic and Nuclear Properties

Measured Values and Evaluation Procedures

Publication

Laboratory reports (Saclay, PTB)

WWW (http://www.bnm.fr/bnm-Inhb/DDEP.htm)

Bureau Internacional des Poids et Mesures (BIPM)

Members of the DDEP Collaboration

- CEA/LNHB (France):Dr. Marie-Martine Bé, Dr. Vanessa Chiste, Dr. B. Duchemin
- PTB (Germany): Dr. Herbert Janssen, Dr. E. Schönfeld
- LBNL (USA): Dr. Edgardo Browne, Dr. Coral Baglin, Dr. Shiu-Chin Wu
- INEEL (USA): Dr. Richard G. Helmer, Dr. Charles Reich
- BNL (USA): Dr. Jagdish K. Tuli
- ANL (USA): Dr. Filip Kondev
- KRI (Russia): Dr. Valery P. Chechev
- NPL (UK): Dr. T. Desmond MacMahon
- IAEA (Vienna): Dr. Alan L. Nichols
- USP (Brazil): Dr. Vito Vanin, Dr. Rui M. Castro

Other collaborators

- CIEMAT (Spain): Dr. Jose M. Los Arcos
- UNED (Spain): Dr. Amalia Williart Torres)
- PTB (Germany): Dr. Rainer Dersch

3. Formation of the DDEP Collaboration

- **1991** Dick Helmer initiated discussions with members of PTB and Saclay
- 1991 1993 PTB and Saclay had reached a collaborative agreement
- 1994 Evaluators from the US received approval for participating in this effort. Soon Russian and English evaluators joined them.
- 1995 First meeting of the DDEP collaboration in Paris

4. Nuclear and Atomic Properties in DDEP Evaluations

Most properties evaluated by the DDEP collaboration are relevant to applied research, such as

- Radionuclide half-life
- Nuclear radiations $(\alpha, \beta^{\pm}, \gamma)$ energies, emission and transition probabilities, and equilibrium emission probabilities.
- Energies and emission probabilities of atomic radiations such as X rays, conversion and Auger electrons, and electron-positron pairs emitted in nuclear disintegrations.

Properties reported, but usually not evaluated, are:

- Q-values (from Audi et al. [3])
- Theoretical internal conversion coefficients (Rösel et al. [4]) and pair creation (Schlüter et al. [14]) coefficients.
- γ -ray multipolarities and mixing ratios (from ENSDF)
- <u>Level schemes</u>: levels spin, parity, and half-life (from ENSDF)
- <u>Auger electron</u> energies (from Schönfeld and Rodloff [5]) and <u>X-ray</u> energies and relative emission probabilities (from Schönfeld and Rodloff [6])
- Atomic data such as K-fluorescence yields (ω_k), mean L-shell fluorescence yields (ω_L), and total number of L vacancies created by a K→ L transfer (η_{KL}) (from Schönfeld and Janssen [7]).
- Log ft's for β [±] decay and α -decay hindrance factors (from ENSDF, or calculated with computer programs used for ENSDF evaluations.)

5. Evaluation Procedures and Computer Programs

- Limitation of Relative Statistical Weight method (W.L. Zipj, M.U. Rajput, and T.D. Macmahon)
- Program LWEIGHT (Developed at NPL and LBNL)
- Program EMISSION (Developed at PTB)
- Program EC-CAPTURE (Developed at PTB and LBNL)

Current Status of Evaluations

- 259 selected radionuclides
- As of October 1, 2003:
 - 99 evaluations have been produced
 - 29 evaluations have been published in the French *Table of Radionuclides*
 - 74 evaluations are available on the WWW (http://www.bnm.fr/bnm-lnhb/DDEP.htm)
 - **5** evaluations are in progress

7. DDEP, IAEA-CRP, and ENSDF

- The DDEP Collaboration has evaluated most of the radionuclides included in the IAEA-CRP list.
- A large fraction of the data presented in DDEP evaluations is from ENSDF
- Very few DDEP evaluations have been included in ENSDF. Main difficulties:

Different data formats: Microsoft Access for DDEP, 80-character ASCII records for ENSDF Different theoretical conversion coefficients: Rösel values in DDEP, Hager and Seltzer values in ENSDF

Integrating DDEP and ENSDF

- Using the same theoretical internal conversion coefficients ("Dirac-Fock Internal Conversion Coefficients", I.M. Band et al., Atom. Data and Nucl. Data Tables 81, 1 (2002)?)
- Using new software (from Saclay) to produce ENSDF data sets from DDEP evaluations
- Establishing a new database (similar to XUNDL) in Brookhaven for DDEP evaluations in ENSDF format

Nucleide

ENSDF Data set

```
2002BA38,1994EN02
66ZN 66GA EC DECAY
66ZN C Others: 2002Ga20, 1971Ca14, 1970Ph01.
66ZN N 1.0 1.0 1.0
66ZN L0
                               STABLE
                 50 4 0.47 4 7.88
66ZN E
66ZN 2 E CK=0.8850 15$CL=0.0978 12$CM+=0.0161 4
66ZN L1039.2268 212
                               1.65 PS 6
66ZN G 1039.220 3 37 3 E2
66ZN L1872.7633 242
                               0.19 PS 7
66ZN G 833.5324 215.9 5 M1+E2
                                 -1.6 2
66ZN G 1872.740 6 0.0229 24 [E2]
66ZN L2372.352 4 0
       0.30 3 0.038 3 8.46
66ZN
   E
66ZN 2 E CK=0.8847 15$CL=0.0980 12$CM+=0.0162 4
   G 499.590 6 0.0048 12E2+M3
66ZN
66ZN G 1333.112 5 1.17 9 E2
```